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Abstract 

General in tegra l  equations fo r  the determination 

of entropy, enthalpy, and internal  energy are derived. 
In  the f i rs t  part of t h i s  paper the integration path i s  

taken t o  be on the real gas surface thus yielding one 

set of equations. I n  the la t ter  pa r t  of t h i s  paper 

the integration path i s  defined such tha t  idea l  gas 
specific heats and reference properties are introduced. 

The latter s e t  of integral  equations are applied t o  
'a par t icular  equation of s t a t e  resul t ing i n  algebraic 

expressions for  the entropy, enthalpy, and in te rna l  

energy. * 
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INTRODUCTION 

Several recent publications [l, 2, 3, 4, 51 from this laboratory 
on the calculation of thermodynamic properties of cryogenic fluids 
contain various relations for the determination of entropy, enthalpy, 
and internal energy. 
the derivation and application of these equations; this interest generally 
results from the fact that standard texts on thermodynamics are, almost 
without exception, inadequate in the presentation of material on the 
calculation of thermodynamic properties. The purpose of this paper is 
to-derive the functions necessary for the calculation of thermodynamic 
properties. These derivations are intended to give the reader a better 
understanding of the methods of calculating thermodynamic properties and 
thus of the limitations of the tables so produced. 

Considerable interest has been expressed about 

In the first part of this paper, general thermodynamic relations 
are presented for the calculation of thermodynamic properties from 
functions representing P-V-T and specific heat, velocity of sound or 
Joule-Thomsoll'data. In the latter part of the paper, the equations for 
thermodynamic properties are developed in terms of zero-pressure, i.e., 
ideal gas, specific heats and are applied to a particular equation of 
state. 



NOTATION 

P - absolute pressure 
T - absolute temperature 
V - specific volume 
p - density = 1/V 
S - specific entropy 
H - specific enthalpy 
U - specific internal energy 
Cp - specific heat capacity at constant pressure 
Cv - specific heat capacity at constant volume 
C, - specific heat capacity at constant saturation 
W - velocity of sound 
p - Joule-Thomson coefficient 
H - universal gas constant 

Superscripts 

o 

* 
- denotes an ideal gas property 
- denotes a property (real or ideal) at very 

'I1 - denotes a saturated vapor property 
" - denotes a saturated liquid property 

low pressures (P = 0) 

Subscripts 

o - denotes a reference state property 
c - denotes a critical point property 

Subscripts on partial derivatives or integrals indicate the 
property to be held constant and, in addition, the subscript 
indicates constant saturation. 

(5 
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GEREBAL THERMODYNAMIC RELATIONS AND CALCULATIONS 

.Basic relations such as Maxwell's equations (1) and (2), 
definitions of specific heats and enthalpy (31, (41, (51, and (8) and 
two other thermodynamic equations, (6) and (7), are presented in many 
elementary thermodynamic texts. 

H = U + W  

These equations illustrate that P-V-T relations are sufficient to 
determine entropy, enthalpy and internal energy differences along 

isothermal paths. In addition,it may also be observed that the 
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variations in S, U, and H along isobars or isometrics can be determined 
from the corresponding specific heats at constant pressure or volume, 
respectively, but not from P-V-T relations alone. 

S, U, or H between two state points are calculated by integrating along 
a series of isotherms and isobars or isometrics. 
has been determined the other may be obtained from (8). ) 
changes in S and U, with V as an independent variable, obtained by 
integrating equations (2) and (6) with respect to volume are respectively 

Thus the changes in 

(Once either H or U 

The isothermal 

(The subscript "T" indicates the path is isothermal.) 

If, instead, P is considered an independent variable, the isothermal 
changes in S and H obtained by integrating equations (1) and (7) with 
respect to pressure are respectively 

AST = :Ip2 (g)p dP, 
T p1 

AHT= J 
T p1 

The changes in S and H along an 
with respect to temperature are 

A s p  = 

AHp = 

isobar obtained by integrating equation (4) 
respectively 

s T2 Cp dT. 
p T1 
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Along isometrics, the changes in S and U obtained by integrating 
equation (3 )  w i t h  respect to temperature are respectively 

It is also desirable to calculate property changes along paths of 
constant saturation. 
saturation found by integrating equation ( 5 )  with respect to temperature 
are 

The changes in entropy and internal energy along 

AS, = r" 
T1 J 

A*, = 1" [C, '- &jU] dT, 
T1 

where V and P are the saturated volume and vapor pressure, respectively, 
and are f'unctions of temperature alone. 

A typical integration path is illustrated in Fig. 1. The point "0" 
is an arbitrary reference state while the path E is a constant pressure 
path along which 5 is known. 
be explicit in pressure. 
the isothermal paths E and 
in the following relations giving S, H, and U at the point C With 

respect to the reference values So, %, and Uo respectively. 

The equation of state is considered to 

and equations (ll) and (12) to E results 
The application of equations (9) and (10) to 
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Figure I Typical path of integration in 

(a) P-T and (b) T-S coordinates 



It is important to note the quantities L A  and VB in the 6uwe 
equations are each defined by the intersection of an isobar and an 
isotherm and thus the equation of state, P = P(V,T), must be solved for V. 
These volumes can usually be obtained by an iterative process such as 
the Newton-Raphson method. The necessity of solving for volume is 
el-ted if the path is an isometric along which Cv is known. 
reference to Fig. 1, it can also be seen that a point such as F in the 
liquid region can be reached by a path through the two phase region. 
This, however, requires additional data to define the two phase boundary, 
in particular, the variation of the vapor pressure with temperature. 
The changes in S, H, and U across this two phase region may then be 
determined from the Clapeyron relationship (20). 

With 

s'" - S ' I  

or 

where the prime notations are used to distinguish the properties of the 
two phases at the same temperature and (dp/dT), is the slope of the 
vapor pressure curve. 
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Thus, for  any point i n  the l iquid,  S, H, and U may be obtained 

from equations similar t o  (17), (18), and (19) with the addition of the 

appropriate value from (20). Convenient checks on the va l id i ty  of the 

saturated l iquid properties obtained i n  t h i s  manner may be obtained by 

u t i l i z ing  la ten t  heat data o r  by the calculation of S, H, and U along 

saturation from C, data with equation (15) and (16). 
Other property relat ions may also be considered f o r  the calcula- 

t i o n  of specific heat values from al ternate  thermodynamic data. 

values may be used i n  the absence of experimental specific heat data or  
t o  check those data which a re  available. For example, C may be calcu- 

l a t ed  from equation (21) with velocity of sound data, where the deriva- 

t i v e  (g) i s  calculated from (22) which i s  val id  fo r  small amplitude 

These 

P 

S 
sound propagation. 

V2 ($& = - p ’ 

where W i s  the velocity of sound. It i s  a l so  possible t o  obtain Cp 
values from Joule-Thomson coefficients,  p 

C p -  - &[T($) CL P 

Caution should be observed i n  considering 

, with equation (23). 

- VI 

the use of (21) and (23) 
inasmuch as the differences involved i n  both equations may become very 

small, and thus produce large re la t ive  errors  i n  the Cp values. 
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THERMODYNAMIC PROmRTY CALCULATIONS 
BASED ON P-V-T RELATIONS AND ZERO-PRESSURE SPECDIC HEATS 

Significant errors in thermodynamic properties calculated as 
previously described may arise from the uncertainty in the specific heat 
data. 
specific heats cd.culated by the methods of statistical mechanics with 
spectroscopic data, since ideal gas properties are generally abmt an 
order of magnitude more accurately known than t h e  real gas properties 
determined by calorimetric methods. 

These errors may be reduced significantly by using zero-pressure 

In extending the isotherms of the path of integration shown in 
Fig. 1 such that approaches the zero-pressure isobar, it is  clear that 
the representation of the P-V-T surface for the real gas must be valid to 
these low pressures. (The value of PV f r o m  the reQ gas equation of state 
must approach RT as P approaches zero.) 
becomes convenient to choose the reference state on the ideal gas surface. 
Since a reference point at zero pressure would result in infinite entropies 
at any finite pressure on the real or ideal gas surface, the standard 
reference state is usually chosen at 1 atmosphere and To on the ideal gas 
surface; this is eqdvalent to choosing the standard reference values of 
enthalpy and internal energy at zero pressure and To as f and 
functions of temperature alone for the ideal gas. 

in Fig. 2. 

the paths OA aud Bc and (11)  am^ (12) to E. 

AS a consequence, it now also 

are 

The path of integration for the following derivation is illustrated 

Equations (24) and (25) are obtained by applying (9) and (10) to 
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- Path on real gas surface 
Path on ideal gas surface ---- 

T 
- Path on . red gas surface 

Path on ideal gas surface 

S 
Figure 2 Path of integration from ideal to 

real gas surface on (a) P-T and 
(b) T-S coodinates 



* *  T 
+ J $ a T + * - P o v o + W - P v B ] .  
9 To 

It is necessary to b-uce the limit as P* approaches zero, since ~ a l y  
then do the real and Ideal surfaces coincide. Since for the ideal gas 

BV is independent of temperature, [BV = ;],the first i n t e r n  in 

. 

(24), can be evaluated at any temperature T. 

This integral i s  then replaced by three integrals 

m0 to obtain RT - p)c and V: = 7 

Substitution Into equation (24) yields in the limit 

A similar simplification of (25) yields, 

av = - 
Equation (26) and (27) are obtained by substituting V = 1/p and 
dP/p2 into (24a) and (258) respectively. 
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It i s  reemphasized a t  t h i s  point t ha t  the  necessary low pressure 

and thus large volume 

such tha t  PV + RT. 

approach R/V i n  order t o  cancel the existing R/V term i n  (248) 

c lear  t ha t  if t h i s  i s  not the case, then the remaining R/V term will 
integrate t o  In V which a t  the upper l i m i t  i s  in f in i t e .  

behavior of the  r e a l  gas equation of s t a t e  i s  

In  other words (aP/a), for  the rea l  gas must 
It i s  

The value of So may be obtained from idea l  gas property tabula- 
TO 

t ions.  It i s  noted, however, t ha t  Ho i s  often tabulated with respect 
TO 

0 t o  the ground s t a t e  energy Uo, i . e . ,  Ho - Uz. Thus it is  appropriate, 
TO 

0 i f  such tables are  used, t o  e i ther  tabulate H - Uo o r  assign a value t o  

Uz and tabulate H. 

existing property tabulation, i n  which case, frQm an engineering 

Frequently it i s  desired t o  extend the range of an 

standpoint, it is desirable t o  choose a reference s t a t e  on the r ea l  gas 

surface such tha t  the two  tabulations agree a t  tha t  point. The values 

of so and H g  must then be calculated t o  bring about the desired 
TO 

agreement. The result ing values of Ho and So are  thus based not only 
TO TO 

on the  assigned reference s t a t e  of the existing tabulation but also on 
the accuracy with which the equation of s t a t e  represents the r ea l  gas 

surface. 

the spectroscopically determined idea l  gas entropy except when the zero 

point for  entropy has been chosen a t  O'K; i n  t h i s  case the agreement of 

The value of So so obtained has no re la t ion  whatsoever with 
TO 

the values of So 

by the th i rd  law of thermodynamics. 

determined by the two methods i s  another check provided 
TO 

The value of Ho calculated i n  t h i s  
T, 
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way i s  not i n  confl ic t  w i t h  the H" 
data since the value of U: i s  not defined. 

t rar i ly  assigned thus producing any desired value f o r  HO 

- UE tabulations based on spectroscopic 

0 
TO 

The value of Uo may be arbi-  

To- 
Derivations similar t o  those above but s ta r t ing  with equations 

(ga) and (loa) result i n  equations (26a) and (27a) i n  which P and T a re  

considered as independent variables. 

H = H o  + J p [ V - T ( g ) d d € ' +  S'CidT 
To T o  TO 

APPLICATION OF AN EQUATION OF STATE TO THERMODWAMIC EQUATIONS 

As an i l l u s t r a t ion  of the application of (26) and (27) the derived 

properties S and H w i l l  be obtained in algebraic form f o r  the equation 

of state (28) presented by Strobridge [ l ]  . 

It w i l l  be assumed here that the equations f o r  zero-pressure specif ic  

heat, vapor pressure, and the derivative of the vapor pressure with 

respect t o  temperature a re  all available. 

forms have been found t o  be adequate fo r  some f luids .  

For example the following 

In P = B1 + B,/T + B,T + B, In T (30)  



The specific heat integrals may now be replaced by, 

& E O  - - ST!$ T dT, 
To 

T 
= S Co dT. 

& E O  P 
To 

with P as defined by (28) is, 
P 

The derivative ($) 
(g)p = Rp + P2 (Rnl - n3/T2 - 24/T3 - 4n5/T5) + p3%R + p4n, 

For convenience the following notation is introduced: 

The quantities S( p) , S ’ ( P) and U( p )  represent the corresponding 
indefinite isothermal integrals. 
and (33)  are 

These integrals evaluated from (28) 



Substituting the above relations into (26) and (27) results i n  

(W 

(41) 

0 s = sT0 - R ~n (PRT/P~) + asEo + ~'(0) - ~ ' ( p ) ,  

+ U(P)  - U(0) + P/p - RT + %o 0 H = HG 

For a point i n  the liquid region the entropy and enthalpy are given by 

- (dP/dT), (l/Pnl - l /P")  + s (PI - s(P"), (42) 

H = go + U(d") - U(0)  + P/pnl - RT + m~~ 

- T(dP/dT), (l/p"' - l / P " )  + p/P - p/P" + u(P) - ~ ( P " ) Y  (43) 

where the Clapeyron relation (20) has been used t o  cross the two phase 
region. 

Note that  ~ ' ( p )  exists even a t  PO while S(O) i s  inf ini te .  * 
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